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Agenda

● Tree Recap
● Observations
● Self Balancing Trees
● Examples



Reading Assignment

● Read Chapter 27 - Balanced Search Trees
○ Chapter 27 (Read about: AVL, Red-Black Trees, B-Trees)



Trees



Tree Operations

Binary Tree Average Case Worst Case

Insert O( log(n) ) O(n)

Delete O( log(n) ) O(n)

Search O( log(n) ) O(n)



Tree Operations Contd.

Binary Tree Average Case Worst Case

Insert O( log(n) ) O(n)

Delete O( log(n) ) O(n)

Search O( log(n) ) O(n)



Remember

Worst Case for a Tree:

● resembles a linked lists…. But still a valid binary tree



Observations Contd.

1) Is there a way we can reorder the data to be more performant?
○ Does our data lose meaning after reordering?
○ Still want to have a tree structure….
○ We don’t want to use a different ADT

2) Can we create a rule to follow when we need to re-order data?



ICE 5.1 Reorder the tree

Instructions: Reorder the data in the tree to yield a better search runtime...



Note

● n = the height of a tree
● The runtime is between  log2(n) and n



log2(n) vs log(n)

● Derivation/Absolute Runtime has detail: log2(n)
● Big O notation doesn’t care about constant terms: log(n)

○ log2 has a base of 2
○ Log has a base of 10
○ Remember change of base:

ln(n) = log2(n)

ln(n) = log10(n) / log10(2) = log(n) x 1/C

C is a constant.. O(n) drops constants… = log(n)



Observations

● Minimize the height of the tree
○ Reduces the worst case to average case

● Goal is to preserve the same data
● Goal is to preserve the relative hierarchy (Binary Search Tree Properties)

● Move from: O(n) -> O ( log(n) )



Self Balancing Trees

● Self Balancing Tree: Type of trees that try to reduce the height of the tree 
for performance gains

○ The smaller the height, the less exaggerated the runtime (n) vs log(n).

● The tree is rebalanced at specific times/operations to reduce the runtime 
overhead of rebalancing

● Rebalancing does add an overhead to execution, but it’s worth it.



Balanced Tree



SBT Contd.

● Max height <= log2n

● Balanced BSTs are not always so precisely balanced...
○ expensive to keep a tree at minimum height at all times... 
○ most algorithms keep the height within a constant range - balance factor



Tree Operations Revisited

Binary Tree Average Case Worst Case

Insert O( log(n) ) O(n)

Delete O( log(n) ) O(n)

Search O( log(n) ) O(n)



Balanced Tree Operations

Binary Tree Average Case Worst Case

Insert O( log(n) ) ~ O( log(n) )

Delete O( log(n) ) ~ O( log(n) )

Search O( log(n) ) ~ O( log(n) )



Self Balancing Trees

● AA tree
● AVL tree
● Red-black tree
● B-tree
● Many more….



Applications

1) Improve the runtime performance of a BST…

2) Useful in preserving ordered relationships nodes - implementing a 
queue/priority queue



Learning Outcomes

● Understand the tree data structure and its related terminologies.
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