
5 - Self Balancing Trees
Joseph Afework
CS 241

Dept. of Computer Science
California Polytechnic State University, Pomona, CA

Agenda

● Tree Recap
● Observations
● Self Balancing Trees
● Examples

Reading Assignment

● Read Chapter 27 - Balanced Search Trees
○ Chapter 27 (Read about: AVL, Red-Black Trees, B-Trees)

Trees

Tree Operations

Binary Tree Average Case Worst Case

Insert O(log(n)) O(n)

Delete O(log(n)) O(n)

Search O(log(n)) O(n)

Tree Operations Contd.

Binary Tree Average Case Worst Case

Insert O(log(n)) O(n)

Delete O(log(n)) O(n)

Search O(log(n)) O(n)

Remember

Worst Case for a Tree:

● resembles a linked lists…. But still a valid binary tree

Observations Contd.

1) Is there a way we can reorder the data to be more performant?
○ Does our data lose meaning after reordering?
○ Still want to have a tree structure….
○ We don’t want to use a different ADT

2) Can we create a rule to follow when we need to re-order data?

ICE 5.1 Reorder the tree

Instructions: Reorder the data in the tree to yield a better search runtime...

Note

● n = the height of a tree
● The runtime is between log2(n) and n

log2(n) vs log(n)

● Derivation/Absolute Runtime has detail: log2(n)
● Big O notation doesn’t care about constant terms: log(n)

○ log2 has a base of 2
○ Log has a base of 10
○ Remember change of base:

ln(n) = log2(n)

ln(n) = log10(n) / log10(2) = log(n) x 1/C

C is a constant.. O(n) drops constants… = log(n)

Observations

● Minimize the height of the tree
○ Reduces the worst case to average case

● Goal is to preserve the same data
● Goal is to preserve the relative hierarchy (Binary Search Tree Properties)

● Move from: O(n) -> O (log(n))

Self Balancing Trees

● Self Balancing Tree: Type of trees that try to reduce the height of the tree
for performance gains

○ The smaller the height, the less exaggerated the runtime (n) vs log(n).

● The tree is rebalanced at specific times/operations to reduce the runtime
overhead of rebalancing

● Rebalancing does add an overhead to execution, but it’s worth it.

Balanced Tree

SBT Contd.

● Max height <= log2n

● Balanced BSTs are not always so precisely balanced...
○ expensive to keep a tree at minimum height at all times...
○ most algorithms keep the height within a constant range - balance factor

Tree Operations Revisited

Binary Tree Average Case Worst Case

Insert O(log(n)) O(n)

Delete O(log(n)) O(n)

Search O(log(n)) O(n)

Balanced Tree Operations

Binary Tree Average Case Worst Case

Insert O(log(n)) ~ O(log(n))

Delete O(log(n)) ~ O(log(n))

Search O(log(n)) ~ O(log(n))

Self Balancing Trees

● AA tree
● AVL tree
● Red-black tree
● B-tree
● Many more….

Applications

1) Improve the runtime performance of a BST…

2) Useful in preserving ordered relationships nodes - implementing a
queue/priority queue

Learning Outcomes

● Understand the tree data structure and its related terminologies.

References

http://www.purplemath.com/modules/logrules5.htm

https://en.wikipedia.org/wiki/Binary_search_tree

https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree

http://www.purplemath.com/modules/logrules5.htm
http://www.purplemath.com/modules/logrules5.htm
https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree

